19 research outputs found

    Real-Time Virtualization and Cloud Computing

    Get PDF
    In recent years, we have observed three major trends in the development of complex real-time embedded systems. First, to reduce cost and enhance flexibility, multiple systems are sharing common computing platforms via virtualization technology, instead of being deployed separately on physically isolated hosts. Second, multi-core processors are increasingly being used in real-time systems. Third, developers are exploring the possibilities of deploying real-time applications as virtual machines in a public cloud. The integration of real-time systems as virtual machines (VMs) atop common multi-core platforms in a public cloud raises significant new research challenges in meeting the real-time latency requirements of applications. In order to address the challenges of running real-time VMs in the cloud, we first present RT-Xen, a novel real-time scheduling framework within the popular Xen hypervisor. We start with single-core scheduling in RT-Xen, and present the first work that empirically studies and compares different real-time scheduling schemes on a same platform. We then introduce RT-Xen 2.0, which focuses on multi-core scheduling and spanning multiple design spaces, including priority schemes, server schemes, and scheduling policies. Experimental results demonstrate that when combined with compositional scheduling theory, RT-Xen can deliver real-time performance to an application running in a VM, while the default credit scheduler cannot. After that, we present RT-OpenStack, a cloud management system designed to support co-hosting real-time and non-real-time VMs in a cloud. RT-OpenStack studies the problem of running real-time VMs together with non-real-time VMs in a public cloud. Leveraging the resource interface and real-time scheduling provided by RT-Xen, RT-OpenStack provides real-time performance guarantees to real-time VMs, while achieving high resource utilization by allowing non-real-time VMs to share the remaining CPU resources through a novel VM-to-host mapping scheme. Finally, we present RTCA, a real-time communication architecture for VMs sharing a same host, which maintains low latency for high priority inter-domain communication (IDC) traffic in the face of low priority IDC traffic

    Limitations and Solutions for Real-Time Local Inter-Domain Communication in Xen

    Get PDF
    As computer hardware becomes increasingly powerful, there is an ongoing trend towards integrating complex, legacy real-time systems using fewer hosts through virtualization. Especially in embedded systems domains such as avionics and automotive engineering, this kind of system integration can greatly reduce system weight, cost, and power requirements. When systems are integrated in this manner, network communication may become local inter-domain communication (IDC) within the same host. This paper examines the limitations of inter-domain communication in Xen, a widely used open-source virtual machine monitor (VMM) that recently has been extended to support real-time domain scheduling. We find that both the VMM scheduler and the manager domain can significantly impact real-time IDC performance under different conditions, and show that improving the VMM scheduler alone cannot deliver real-time performance for local IDC. To address those limitations, we present the RTCA, a Real-Time Communication Architecture within the manager domain in Xen, along with empirical evaluations whose results demonstrate that the latency of communication tasks can be improved dramatically from ms to μs by a combination of the RTCA and a real-time VMM scheduler

    Cache-Aware Compositional Analysis of Real-Time Multicore Virtualization Platforms

    Get PDF
    Multicore processors are becoming ubiquitous, and it is becoming increasingly common to run multiple real-time systems on a shared multicore platform. While this trend helps to reduce cost and to increase performance, it also makes it more challenging to achieve timing guarantees and functional isolation. One approach to achieving functional isolation is to use virtualization. However, virtualization also introduces many challenges to the multicore timing analysis; for instance, the overhead due to cache misses becomes harder to predict, since it depends not only on the direct interference between tasks but also on the indirect interference between virtual processors and the tasks executing on them. In this paper, we present a cache-aware compositional analysis technique that can be used to ensure timing guarantees of components scheduled on a multicore virtualization platform. Our technique improves on previous multicore compositional analyses by accounting for the cache-related overhead in the components’ interfaces, and it addresses the new virtualization-specific challenges in the overhead analysis. To demonstrate the utility of our technique, we report results from an extensive evaluation based on randomly generated workloads

    Cache-Aware Compositional Analysis of Real-Time Multicore Virtualization Platforms

    Get PDF
    Multicore processors are becoming ubiquitous, and it is becoming increasingly common to run multiple real-time systems on a shared multicore platform. While this trend helps to reduce cost and to increase performance, it also makes it more challenging to achieve timing guarantees and functional isolation. One approach to achieving functional isolation is to use virtualization. However, virtualization also introduces many challenges to the multicore timing analysis; for instance, the overhead due to cache misses becomes harder to predict, since it depends not only on the direct interference between tasks but also on the indirect interference between virtual processors and the tasks executing on them. In this paper, we present a cache-aware compositional analysis technique that can be used to ensure timing guarantees of components scheduled on a multicore virtualization platform. Our technique improves on previous multicore compositional analyses by accounting for the cache-related overhead in the components’ interfaces, and it addresses the new virtualization-specific challenges in the overhead analysis. To demonstrate the utility of our technique, we report results from an extensive evaluation based on randomly generated workload

    Realizing Compositional Scheduling Through Virtualization

    Get PDF
    We present a co-designed scheduling framework and platform architecture that support compositional scheduling of real-time systems. The architecture is built on Xen virtualization platform, and relies on compositional scheduling theory that uses periodic resource models as component interfaces. We implement resource models as periodic servers and consider enhancements to periodic server design that significantly improve response times of tasks and resource utilization in the system while preserving theoretical schedulability results. We present an extensive evaluation of our implementation using workloads from an avionics case study as well as synthetic ones

    RT-OpenStack: CPU Resource Management for Real-Time Cloud Computing

    Get PDF
    Clouds have become appealing platforms for not only general-purpose applications, but also real-time ones. However, current clouds cannot provide real-time performance to virtual machines (VMs). We observe the demand and the advantage of co-hosting real-time (RT) VMs with non-real-time (regular) VMs in a same cloud. RT VMs can benefit from the easily deployed, elastic resource provisioning provided by the cloud, while regular VMs effectively utilize remaining resources without affecting the performance of RT VMs through pro per resource management at both the cloud and the hypervisor levels. This paper presents RT-OpenStack, a cloud CPU resource management system for co-hosting real-time and regular VMs. RT-OpenStack entails three main contributions: (1) integration of a real-time hypervisor (RT-Xen) and a cloud management system (OpenStack) through a real-time resource interface; (2) a realtime VM scheduler to allow regular VMs to share hosts with RT VMs without interfering the real-time performance of RT VMs; and (3) a VM-to-host mapping strategy that provisions real-time performance to RT VMs while allowing effective resource sharing with regular VMs. Experimental results demonstrate that RTOpenStack can effectively improve the real-time performance of RT VMs while allowing regular VMs to fully utilize the remaining CPU resources

    RT-OpenStack: a Real-Time Cloud Management System

    Get PDF
    Clouds have become appealing platforms for running not only general-purpose applications but also real-time applications. However, current clouds cannot provide real-time performance for virtual machines (VM) for two reasons: (1) the lack of a real-time virtual machine monitor (VMM) scheduler on a single host, and (2) the lack of a real-time aware VM placement scheme by the cloud manager. While real-time VM schedulers do exist, prior solutions employ either heuristics-based approaches that cannot always achieve predictable latency or apply real-time scheduling theory that may result in low CPU utilization. We observe the demand and advantage for co-hosting real-time (RT) VMs with non-real-time (regular) VMs in the same cloud. On the one hand, RT VMs can benefit from the easily deployed, elastic resource provisioning provided by a cloud; on the other hand, regular VMs can fully utilize the cloud without affecting the performance of RT VMs through proper resource management at both the cloud and hypervisor levels. This paper presents RT-OpenStack, a cloud management system for co-hosting both real-time and regular VMs. RT-OpenStack entails three main contributions: (1) integration of a real-time hypervisor (RT-Xen) and a cloud management system (OpenStack) through a real-time resource interface; (2) an extension of the RT-Xen VM scheduler to allow regular VMs to share hosts with RT VMs without jeopardizing the real-time performance of RT VMs; and (3) a VM-to-host mapping strategy that provisions real-time performance to RT VMs while allowing effective resource sharing among regular VMs. Experimental results demonstrate that RTOpenStack can support latency guarantees for RT VMs, and at the same time let regular VMs fully utilize the remaining CPU resources

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Prioritizing Local Inter-Domain Communication in Xen

    No full text
    Abstract—As computer hardware becomes increasingly powerful, there is an ongoing trend towards integrating QoS-critical systems as virtual machines (domains) on a common, virtualized computing platform. Given the lower latency of local interdomain communication (IDC) on the same host (compared to inter-host communication), system administrators may preferably colocate domains so that they can communicate locally. When multiple IDC flows contend on the same host, it is important to properly prioritize IDC flows among domains to meet their respective QoS requirements. This paper examines the limitations of IDC in Xen, a widely used open-source virtual machine monitor (VMM) that recently has been extended to support real-time domain scheduling. We find that both the VMM scheduler and the manager domain can significantly impact IDC QoS under different conditions, and show that improving the VMM scheduler alone cannot effectively prevent priority inversion for local IDC. To address those limitations, we present RTCA, a Real-Time Communication Architecture within the manager domain in Xen, along with experimental results that demonstrate the latency of high-priority IDC can be improved dramatically from ms to µs by a combination of the RTCA and a real-time VMM scheduler. I
    corecore